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Abstract— Current NASA studies are examining 
opportunities for the deployment of robot colonies or 
outposts on planetary surfaces within the solar system in the 
first few decades of the 21st century. This paper presents the 
results of some ongoing work in the Planetary Robotics 
Laboratory at JPL in the area of behavior-based control for 
cooperative multi-robot systems for a planetary robot 
outpost.  We have recently developed a behavior-based 
system called BISMARC (Biologically Inspired System for 
Map-based Autonomous Rover Control) that uses a free 
flow hierarchy for its action selection mechanism. We report 
the results of numerous simulation studies of complicated 
multiple rover missions. 
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1. INTRODUCTION 
 

Robot outposts represent the next stage of exploration for 
NASA planetary surface studies beyond the Mars Sample 
Return missions of 2003/2005. Outpost operations include 
such tasks as the deployment and servicing of power systems 
and in-situ resource utilization (ISRU) generators, 
establishing long-life robotic science stations for 
measurement and communications, construction of beaconed 
roadways, and the site preparation and deployment of human 
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habitat modules. These outposts must be more or less self-
sustaining due to the high cost of resupply. Robot autonomy 
within the context of a remote outpost will be constrained by 
mission mass restrictions, and the harsh nature of planetary 
surfaces. Among these constraints are relatively low 
computing capabilities and onboard memory due to power 
constraints, operation within wide temperature extremes, 
and navigation over multiple terrain types from featureless 
flat plains to sheer cliffs.  In addition, the complexity of the 
tasks undertaken by robots making up an outpost push the 
limits of current control capabilities. A discussion of the 
needed capabilities for robotic systems for outposts can be 
found in the study done by Huntsberger, Rodriguez and 
Schenker [13]. 
 
Control architectures for robotic systems can be broadly 
characterized as planning or deliberative, behavior-based or 
reactive, and hybrid blends of the methods [19]. The 
planning systems usually have a high computational 
overhead and require an environment that is relatively static. 
A representative system is that of Kosaka and Kak [14].  
Reactive control systems, on the other hand, are based on a 
mapping between sensor inputs and actuators, and as such, 
tend to sacrifice optimality and goal convergence guarantees 
for more or less real-time response.  Such systems were 
introduced by Brooks [4] and further extended by Arkin [1], 
Parker [18], and Mataric [17] among others.  The 
Autonomous Robot Architecture (AuRA) [1], Atlantis [5], 
and the Planner-Reactor Architecture [16] are some 
examples of hybrid control systems. 
 
Recently, reactive control systems have gained popularity 
for controlling mobile robotic platforms on planetary 
surfaces.  This was demonstrated to some extent by the Mars 
Sojourner mission in the summer of 1997.  Two laboratory 
prototype rover systems for planetary surface missions 
include the Sample Return Rover (SRR) and the Field 
Integrated Design and Operations (FIDO) rover, both shown 
in Figure 1, which are currently being field tested at the Jet 
Propulsion Laboratory in Pasadena, CA, USA.  These rovers 
are among a wide class of planetary surface rovers 
developed at JPL which include the Long Range Science 
Rover Rocky 7.  SRR is built for low mass, high speed and 



mobility, while FIDO includes a full science suite equivalent 
to the 2003 Athena system.  These rovers use a traditional 
finite state control system for navigation and goal 
achievement.  Such a reactive approach doesn’t scale well 
when multiple rovers are cooperating on a task, due to the 
large number of potential states that can occur. 
 
Behavior-based systems approach autonomy from the 
standpoint of collections of behaviors.  These run the gamut 
from the purely subsumptive, reactive single robots detailed 
by Brooks [4] to cooperative multiple robot systems [2, 3].  
The wide range of possible behaviors that are needed for a 
planetary rover obviates the need for an action selection 
mechanism (ASM) to provide the correct behavior for any 
given situation.  Comprehensive reviews of behavior 
coordination (or action selection) mechanisms can be found 
in Arkin [3] and Pirjanian [19]. Recent work of Pirjanian 
and Mataric [19, 20, 21] using Multiple Objective Decision 
Making (MODM) provides formal tools for generating 
strategies that can guarantee an appropriate trade-off 
between the optimal solutions, which are possibly not 
reachable in a planetary surface environment, and Pareto-
optimal or Satisficing solutions. 
 
BISMARC (Biologically Inspired System for Map-based 
Autonomous Rover Control) is a hybrid wavelet/neural 
network based system under development at JPL [12]. The 
BISMARC architecture is shown in Figure 2.  Previous 
simulations demonstrated that the system is capable of 
control for multiple rovers for multiple cache recovery [6] or 
manned habitat site preparation [11]. Another study 

extended BISMARC to include fault tolerance in the sensing 
and mechanical rover subsystems [7]. The vision subsystem 
in the original BISMARC implementation relied on the 
generalization capabilities of a fuzzy self-organizing feature 
map (FSOFM) neural network [8]. A better vision 
subsystem based on camera models combined with tilt 
sensors that is fully integrated into the BISMARC 
framework was recently developed [9]. A comprehensive 
review of neural network systems for rover navigation and 
control can be found in Huntsberger and Rose [12].  The 
next section gives a general overview of BISMARC, 
followed by some experimental studies and a concluding 
section. 

 
 

2. BISMARC OVERVIEW 
 

The original BISMARC system had three levels and used a 
hybrid mix of neural networks and behavior-based 
approaches [12].  The first level performed a wavelet 
transform on the rover's stereo image pair, the second level 
input these processed images into an action generation 
navigation network, which fed into a third level action 
selection mechanism (ASM) network modeled after the 
DAMN architecture of Rosenblatt and Payton [22]. The first 
and second levels of BISMARC have been replaced with the 
DriveMaps path selection system currently used on SRR and 
FIDO at JPL [10].  DriveMaps determines clear paths and 
obstacles (subsequently used as landmarks) from the stereo 

 

Figure 1 SRR and FIDO rover prototypes in the Planetary Robotics Lab at the Jet 
Propulsion Laboratory in Pasadena, CA, USA. 



pairs of wide field-of-view hazard cameras on the front and 
back of the rovers. When coupled with onboard rover 
components such as accelerometers and wheel encoder 
inputs, an egocentric map of the environment is built using 
the DriveMaps response as an index. 
 

The BISMARC ASM for a cache recovery task is shown in 
Figure 3. The collection of behaviors used by BISMARC 
can be broadly broken into two categories: survival (i.e. 
Avoid Dangerous Places), and task specific (i.e. Scan for 
Cache).  Most tasks will share the same survival behaviors, 
which allows the rover to carry a set of task behaviors and 

 
Figure 2 BISMARC ASM for the cache recovery task. The numbers on the links are the weights for the input feed. 

 
Figure 3 Two level BISMARC architecture with stereo processing, action 
generation, and action selection subsystems. 



switch between them if necessary. The survival behaviors 
include mobility as well as temperature and battery level 
preservation measures.  Sensor feeds are only done at the 
appropriate level where needed, which eliminates the 
potential bottlenecks seen in traditional hierarchical ASMs. 
 
Weights on the links between behaviors perform a type of 
priority weighting, which will ultimately favor selection of 
the heaviest weighted action at the bottom level of the 
hierarchy.  For example, the Sleep at Night behavior is the 
most heavily weighted since absolutely no motion is allowed 
at night due to the lack of night vision.  In the event that 
sensors such as LIDAR are available, this weighting can be 
relaxed to allow movement at night.  Determination of the 
optimal set of weights for completion of any task is not 
mathematically well defined, although recent studies by 
Pirjanian [19], Yen and Pfluger [25], and Steinhage and 
Schöner [23] have defined functional definitions of the 
system dynamics to address this point. 
 
Combination of the weighted links is done in three ways: 
additive, multiplicative, or through a weighted summation 
process suggested by Tyrrell [24]. At the bottom level of the 
ASM hierarchy are the actions that are available to the 
rover.  These include movement, surveillance, survival, and 
task specific actions.  The movement and surveillance 
actions are direction specific, while the survival ones tend 
not to be so.  Once again, as was the case with the high level 
behaviors, the rover can carry a set of task specific actions, 
and select the appropriate set when needed. 
 
Tyrrell introduced the temporal penalty (T-circle in Figure 
3) to control action that will take an inordinate amount of 
time to complete [24]. The temporal penalty is derived using 
the assigned value raised to the power of the elapsed time 
during the current action. Temporal penalty nodes increase 
the likelihood of satisfying the overall mission goal in this 
example of totally clearing a designated area. In addition, 
the uncertainty penalty (U-circle in Figure 3) is used to 
control actions that are heavily dependent on external sensor 
inputs, which are usually noisy and imprecise. 
 
Mapping of a site is based on the use of information taken at 
multiple levels of detail. This includes descent imagery, 
remotely sensed imagery such as that returned by the Mars 
Global Surveyor, range maps from the onboard sensing 
suites, wheel odometry, and gyro/accelerometer inputs.  The 
descent and remotely sensed imagery is used to build a 
coarse level map with a 1 meter grid spacing. This is 
supplemented by a local map with a 5 cm grid spacing 
provided by the onboard sensing (stereo cameras) at the 
"landmarks" such as obstacles, cliffs, habitat modules. These 
areas are mapped extensively and are used for the sharing of 
navigational information between robots.  The map between 
these features only includes odometry and directional vector 
information.  This method gives a detailed view of the 

environment where it is needed, without the storage 
overhead that would be associated with fine grid coverage of 
multi-kilometer sized areas such as those found in an 
outpost. 
 
Since the environment may change due to climatic 
occurrences such as dust storms, and the actions of other 
rovers or manned interaction, BISMARC uses a two-level 
memory system based on perceived short term memory 
(STM) inputs and remembered long term memory (LTM) 
storage.  Perceptions are compared to the LTM contents 
using, at best, uncertain rover localization information.  
Positional variance is used to weight the match to LTM, 
with a stronger chance of match in areas of low variance.  
Variance is kept under control using established landmarks 
such as a lander or habitat module. 
 
Fault detection is built into the ASM using the following 
form of sensor activation function: 
 
 AS = Pd* (1.0 - dist)* (1.0 - Pu),  (1) 

 
where AS is the activation level for sensor S, Pd is the 
normalized sensor input, dist is the normalized distance to 
the perceived objects, and Pu is the perception uncertainty.  
The perception uncertainty is given by: 
 
 Pu = ABS [Pd(t+1)-Pd(t)],    (2) 
 
where Pd() refers to the time separated normalized sensor 
samples.  This expression for Pu experiences a maximum 
when the sensor input undergoes a full range swing.  The 
perception uncertainty is used for fault detection (high 
values indicate a possible fault). Sensors with a high 
uncertainty will have little effect on subsequent nodes.  
These sensors are flagged, and are allowed to come back on-
line if and when the uncertainty stabilizes. 
 
 

3. EXPERIMENTAL STUDIES 
 

We ran 1000 trials using a random heightfield based on 
statistical information returned from the Mars Pathfinder 
mission. The area encompassed about 1 km by 1 km with a 
grid decomposition resolution of 5 cm at the detailed map 
level. Each trial had different starting positions and the 
placement of 4 cache containers was randomized within the 
area. Three rovers were deployed for each simulated 
mission: a scout and two retrieval rovers. These rovers had 
the capabilities of SRR and FIDO respectively. The 
bandwidth of the communication channel between the rovers 
is one Megabit/second, which is the same as the modem 
installed in the current SRR prototype at the Jet Propulsion 
Laboratory.  The top speed on the rovers was set at 25 
cm/sec for the scout and 6 cm/sec for the retrieval rovers, 



which is consistent with the JPL prototypes. In order to 
simulate wheel slippage, we set a 15% loss of traction when 
climbing over a rock or traversing rocky terrain. The battery 
lifetime was set at one week on all of the rovers and the  
timestep size for the simulations was fixed at 0.2 sec. All of 
the rovers were forced to sleep during the night hours of the 
simulations, since there were no infrared sensors on any of 
the rovers. 
 
We included a set of possible faults based on a statistical 
analysis of 200 simulation runs [7].  These faults included 
loss of one or both stereo cameras in front and back, loss of 
mobility in one or more wheel sub-assemblies, loss of power 
regeneration capabilities, loss of one or more wheel 
encoders, loss of one or more degrees of tilt sensing, and 
loss of internal temperature sensing capabilities. In the 
absence of faults the success rate for the cache retrieval task 
was 98.9%.  Faults caused this rate to drop to 16% without 
fault tolerance, with an increase to 46% with the fault 
tolerant weight adjustment discussed above. 
 
In another simulation study, we analyzed the site clearing 
capabilities of a team of six rovers (dozers) that had been 
modified with a bulldozer-like blade for pushing rocks. A 
solitary robot can accomplish site clearing if all of the 
significant rocks are within the size and mass constraints 
that the robot is able to handle. Rocks that are outside these 
limits will need to be cleared using a cooperative multiple 
robot strategy.  This strategy is based on an ant food 
transport study done by Kube and Bonabeau [15], that 
includes a recruitment behavior for the case when a single 
robot cannot move a rock.  Call for Help, Broadcast, and 
Respond to Call behaviors are used to implement the 
strategy.  
 
We ran 100 trials each with colonies of from two to six 
dozers using a randomly generated height field. The area 
encompassed a 50x100 meter rectangle with a grid 
resolution of 5 cm. Each trial had different placement 
positions for the rocks, with a statistical profile of the Mars 
Pathfinder mission site used for mass and number of rocks. 
None of the rocks were allowed to mass over 175 kilograms.  
It was assumed that the clearing, staging, and rock pile areas 
were previously delimited by beacons. In addition all of the 
rocks in the clearance site are assumed to be clearable (no 
iceberg effect).  Top speed on the dozers was set to 30 
cm/sec, with a mass of 100 kilograms, and a size of 2x2x1 
meter (length, width, height). Power use on the dozers 
varied continuously from 30 watts when idle, 60 watts when 
traveling over open terrain, to 110 watts when involved in 
pushing the heaviest rock within the dozer’s capability when 
alone. This capability was set to a maximum of 75 
kilograms.  In order to simulate wheel slippage, we set a 
20% loss of traction when pushing a rock. A collision 
between two dozers was considered as totally disabling to 
both, and a dozer that was hit by a rock being pushed by 
another dozer was also considered totally disabled. Each 

dozer had a forward-facing set of stereo cameras with a 
baseline of 25 cm, a spatial resolution of 486x512 pixels, 
and a 100 degree FOV, a transceiver with a bandwidth of 56 
kbaud, and an 8 channel receiver for beacon monitoring. 
 
Success in the simulation studies was measured in terms of 
total time for the task, and the number of dozers that were 
healthy at the end of the run. Figure 4 plots the total average 
time taken for the task versus the number of dozers that were 
allowed to participate up to a maximum of six. The graph 
starts at two dozers, since there was always at least one rock 
within the clearing area that was larger than a solitary dozer 
could move. The performance was not linear, indicating that 
there is significant interference between the dozers as the 
total number increases.  This behavior manifested itself 
through more collisions with rocks being pushed by another 
dozer, more complicated repositioning operations due to the 
"avoid other robots" behavior, and travel time delays due to 
the need to maintain a safe distance during the recruitment 
phase. The rock-dozer collisions were caused by rocks 
dynamically approaching the about-to-be  damaged dozer 
from an angle outside the range of the forward-facing stereo 
hazard avoidance cameras. 

 
 
 

4. CONCLUSIONS 
 

This paper has presented a behavior-based system called 
BISMARC, which is being evaluated for autonomous 
control of mobile robots in planetary surface outposts.  The 

 
Figure 4 Average total mission times for 500 simulation 
trials versus the number of dozers in each trial. Time is in 
arbitrary simulation units with an average time of 3 weeks, 
4 days for two dozers. Standard deviations are shown as 
error bars 



system has shown itself in 1500 simulation runs to be 
capable of successfully completing complicated multirover 
missions. Although optimality can not be guaranteed using 
only a behavior-based control system, planning behaviors 
can also be included in the ASM hierarchy.  Fault tolerant 
adaptation of the weights in between the behaviors has 
extended the system for long duration capabilities such as 
the 4 year Mars outpost mission being considered for a 
launch in 2007. We are currently porting the algorithm to 
SRR at JPL, and will begin studies within the next few 
months into cooperative control of two rovers for 
transporting a solar tent array container to a site prior to 
deployment.  Our earlier study has identified an electrical 
power system as one of the most important components for 
early deployment for outpost operations [13]. 
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